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Commutative BCK-Algebras and Quantum
Structures†
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We study commutative BCK-algebras with the relative cancellation property, i.e.,
if a # x, y and x ∗ a 5 y ∗ a, then x 5 y. Such algebras generalize Boolean
rings as well as Boolean D-posets (5 MV-algebras). We show that any such
BCK-algebra X can be embedded into the positive cone of an Abelian lattice-
ordered group. Moreover, this group can be chosen to be a universal group for
X. We compare BCK-algebras with the relative cancellation property with known
quantum structures as posets with difference, D-posets, orthoalgebras, and
quantum MV-algebras, and we show that in many cases we obtain MV-algebras.

1. INTRODUCTION

BCK-algebras entered into mathematics in 1966 through the work of
Imai and Iséki [ImIs]. This notion originated from two different avenues; (1)
set theory and (2) classical and nonclassical propositional calculi. BCK-
algebras have been studied by many authors and have been applied to many
branches of mathematics, such as group theory, functional analysis, probabil-
ity theory, and topology. Such algebras generalize Boolean rings as well as
Boolean D-posets (5 MV-algebras).

Investigation of the mathematical foundations of quantum mechanics
had shown that the Kolmogorov model of probability theory holding for
classical mechanics fails in the case of quantum mechanics. Birkhoff and
von Neumann [BiNe] introduced a quantum logic, i.e., an algebraic system
describing a propositional system of quantum mechanics. This system is
more general than Boolean algebras, and the most important example of a
quantum logic is the quantum logic +(H) consisting of all closed subspaces
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of a real, complex, or quaternionic Hilbert space H. More general structures
are orthoalgebras introduced by Foulis and Randall [FoRa]. Recently Kôpka
and Chovanec [KoCh], students of the present author, introduced difference
posets (D-posets in abbreviation), which combine both algebraic and fuzzy
sets ideas. The most important examples are the interval [0, 1] and the system
%(H ) of all effect operators, i.e., of all Hermitian operators A of a real,
complex, or quaternionic Hilbert spaces H such that O # A # I, where I is
the identity. These operators play a key role in the so-called unsharp approach
to quantum mechanics [BLM], when orthogonal projections (having the spec-
trum in {0, 1}) are “sharp” analogues of events in quantum mechanics, while
other effect operators (having the spectrum in [0, 1]) are “unsharp” or “fuzzy”
analogues of ones.

An equivalent structure is an effect algebra introduced originally by
Giuntini and Greuling [GiGr] as a weak orthoalgebra, and Foulis and Ben-
nett [FoBe].

The primary notion of D-posets is a difference, which has some similar
properties to the difference ∗ defined in BCK-algebras. Therefore, in the
present paper we shall investigate connections between posets with difference
and BCK-algebras, and among D-posets and BCK algebras, MV-algebras
introduced by Chang [Cha1] (arising from multivalued logic) and quantum
MV-algebras presented by Giuntini [Giu], and orthoalgebras, respectively.
We show that in many cases they coincide with BCK-algebras only for
commutative BCK-algebras, respectively only for Boolean D-posets (5 MV-
algebras) or Boolean algebras.

On the other hand, we show that for any MV-algebra, its radical, which
gives important information on the propositional system, is always a commu-
tative BCK-algebra not bounded.

We recall that MV-algebras have a very close connection with C*-
algebra, more precisely with approximately finite-dimensional (for short, AF)
C*-algebras, because according to [Mun2, Theorem 4.2], every countable
MV-algebra is in a one-to-one correspondence with AF C*-algebras applied
to Elliott’s classification (with a so-called Murray–von Neumann order on
the set of projections).

On the other hand, we stress that in some physically very important
examples which are only D-posets and not a BCK-algebra, like the set of
effect operators on H, %(H ), there are sub D-posets which have a BCK-
structure (in the mentioned case, e.g., the set of all constants). In addition,
the problem of compatibility in D-posets will lead to using BCK-algebra or
MV-algebra structures in sub D-posets. On the other hand, an important
consequence of applying the theory of BCK-algebras to quantum structure
is the ,-group structure of a given propositional (sub)system. ,-Groups or
po-groups are a very important and traditional part of mathematics which it
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is now possible to apply to quantum structures as was underlined by Greechie
and Foulis [GrFo]. Therefore, the commutative BCK-algebras and MV-alge-
bras can also be useful for quantum structure theory.

2. BCK-ALGEBRAS

According to Imai and Iséki [ImIs], a BCK-algebra is defined as follows:

Definition 2.1. A BCK-algebra (X; ∗, 0) is a nonempty set X with a
binary operation ∗ and with a constant element 0 such that the following
axioms are satisfied. For all x, y, z P X:

(BCK-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) 5 0.
(BCK-2) (x ∗ (x ∗ y)) ∗ y 5 0.
(BCK-3) x ∗ x 5 0.
(BCK-4) x ∗ y 5 0 and y ∗ x 5 0 imply x 5 y.
(BCK-5) 0 ∗ x 5 0.

The partial ordering # on X is defined by

x # y iff x ∗ y 5 0

and then the BCK-algebra is a poset X with a fixed element 0 and with a
binary operation ∗ satisfying the following axioms:

(BCK-18) (x ∗ y) ∗ (x ∗ z) # z ∗ y.
(BCK-28) x ∗ (x ∗ y) # y.
(BCK-38) x # x.
(BCK-48) x # y and y # x imply x 5 y.
(BCK-58) 0 # x.

A BCK-algebra X is said to be commutative if

x ∗ (x ∗ y) 5 y ∗ ( y ∗ x), x, y P X

then

x ∧ y 5 x ∗ (x ∗ y), x, y P X

and any commutative BCK-algebra is a ∧-semilattice.
X is bounded if there exists 1 P X such that x ∗ 1 5 0, x P X, i.e., x #

1; in this case we will write (X; ∗, 0, 1). Every Boolean algebra (we define
a ∗ b :5 a ∧ b8), every MV-algebra (see Theorem 2.4) is a bounded commuta-
tive BCK-algebra. For example, ([0, `); ∗R , 0), where

s ∗R t 5 max{0, s 2 t}

s, t P [0, `), is an unbounded commutative BCK-algebra, and ([0, 1]; ∗R ,
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0, 1) is a bounded commutative BCK-algebra, in fact, an MV-algebra, and
([0, 1); ∗R , 0) is an unbounded commutative BCK-algebra. In addition, any
bounded commutative BCK-algebra is a distributive lattice.

A poset (L; *, #, 0) with a partial order #, a least element 0, and a
partial binary operation *, called a difference on L, such that b * a is defined
iff a # b, is said to be a poset with difference [KoCh] if the followings
axioms are satisfied. For all a, b, c P L:

(DPi) b * a # a.
(DPii) b * (b * a) 5 a.

(DPiii) a # b # c ⇒ c * b # c * a and (c * a) * (c * b) 5 b * a.

If (L; *, #, 0) has the greatest element 1, it is said to be a D-poset.

Example 2.2. Let H be a real, complex, or quaternionic Hilbert space.
Denote by %(H ) the set of all effect operators on H, i.e., of all Hermitian
operators A on H such that O # A # I, where O and I are the null and
identity operators on H. The partial order on %(H ) is defined via A # B iff
(Ax, x) # (Bx, x), x P H. The partial operation * is defined via B * A 5
B 2 A iff A # B, where 2 is the usual subtraction of operators. Then (%(H );
*, O, I ) is a D-poset which is not a lattice and no commutative BCK-
algebra, in which the BCK-order coincides with the original partial order of
effect operators.

For the proof of the following result see [DvKi].

Theorem 2.3 Let (X; ∗, 0) be a BCK-algebra. We define a partial binary
operation 4 on X such that, for x, y P X, y 4 x is defined if and only if
x # y, and in this case

y 4 x :5 y ∗ x

Then:

(i) y 4 x # y if x # y.
(ii) y 4 ( y 4 x) # x if x # y.

(iii) If x # y # z, then z 4 y # z 4 x and (z 4 x) 4 (z 4 y) # y 4 x.

The partial binary operation 4 is a difference on (X; #) if and only if (X;
∗, 0) is a commutative BCK-algebra.

Many-valued analogues of a two-valued logic are MV-algebras intro-
duced by Chang [Cha1], and, according to Mundici [Mun1], they can be
characterized as follows. An MV-algebra is a nonempty set L with two special
elements 0 and 1 (0 Þ 1), with a binary operation % : L 3 L → L, and with
a unary operation *: L → L such that, for all a,b,c P L, we have:
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(MVi) a % b 5 b % a (commutativity).
(MVii) (a % b) % c 5 a % (b % c) (associativity).

(MViii) a % 0 5 a.
(MViv) a % 1 5 1.
(MVv) (a*)* 5 a.

(MVvi) a % a* 5 1.
(MVvii) 0* 5 1.

(MVviii) (a* % b)* % b 5 (a % b*)* % a.

We define the binary operations (, ∨, ∧ as follows:

a ( b :5 (a* % b*)*, a, b P L

a ∨ b :5 (a* % b)* % b, a, b P L

a ∧ b :5 (a* ∨ b*)*, a, b P L

Then (L; (, 1) is a semigroup written “multiplicatively” with the neutral
element 1.2 If, for a, b P L, we define

a # b ⇔ a 5 a ∧ b

then # is a partial order on L, and (L; ∨, ∧, 0, 1) is a distributive lattice
with the least and greatest elements 0 and 1, respectively [Cha1]. We recall
that a # b iff b % a* 5 1.

The following results have been proved in [DvKi].

Theorem 2.4. Let (X; ∗ 0, 1) be a bounded BCK-algebra with the induced
order #. We define:

(i) A partial binary operation 4 defined via (2.1).
(ii) A binary operation V⁄ on X defined via3

y V⁄ x :5 y 4 ( y ∗ ( y ∗ x)), x,y P X

(iii) A unary operation *: X → X defined via

x* :5 1 4 x, x P X

(iv) Binary operations % and ( on X defined via

x % y :5 (x* V⁄ y)*, x, y P X

x ( y :5 x V⁄ y*, x, y P X

Then, for all x, y P X,

2 We remark that in the literature, by an MV-algebra is assumed the structure (L; %, (, *, 0,
1), where ( is defined as above.

3 We recall that y ∗ ( y ∗ x) and x ∗ (x ∗ y) are lower bounds of x and y.
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y V⁄ x 5 y ∗ x, x % y 5 (x* ∗ y)*, x ( y 5 (x* % y*)*

and the following statements are equivalent:

(a) (X; #, 4, 0, 1) is a D-poset.
(b) (X; ∗, 0, 1) is a bounded commutative BCK-algebra.
(c) (X; %, (, *, 0, 1) is an MV-algebra.

If this is the case, then the orders determined by the BCK-algebra and the
MV-algebra coincide.

Theorem 2.5. Let a poset with difference (X; #, *) be a lower semilattice
with respect to #. Define a binary operation ∗ on X by

x ∗ y :5 x * (x ∧ y), x, y P X (2.2)

Then

x ∗ y 5 x * y ⇔ y # x, x, y P X

and X possesses a least element 0. Moreover, (X; ∗, 0) is a commutative
BCK-algebra if and only if, for all x, y, z P X, we have

(x ∗ y) ∗ z 5 (x ∗ z) ∗ y (2.3)

It is necessary to mention that property (2.3) holds in any BCK-algebra
(not only in commutative ones). Therefore, starting with posets being lower
semilattices with difference, they induce via (2.2) a BCK-algebra iff (2.3)
holds; in such a case, the BCK-algebra is commutative. For example, the
difference in 3(H ) does not entail BCK-structure compatible with the original
difference. In addition, in orthomodular lattices such a condition obtains
given an OML is a Boolean algebra.

It is worth recalling that even if a given structure is a D-poset which is
not a commutative BCK-algebra with a binary operation ∗ compatible with
the difference, sometimes it is possible to find a sub D-poset which has such
a property. For example, in %(H ), the set of all constants has such a property,
i.e., (2.3) holds here. In addition, the problem of compatibility on lattice D-
posets can lead to condition (2.3) on a sub D-poset.

On the other hand, of (X; #, 0) is a poset, then (X; ∗, 0), where x ∗
y 5 x if x Ü y and x ∗ y 5 0 if x # y, gives a noncommutative BCK-algebra
such that the BCK order and the original one coincide.

We recall that Chovanec and Kôpka [ChKo] introduced an important
family of D-posets called Boolean D-posets; similarly Bennett and Foulis
[BeFo] introduced Phi symmetric effect algebras. It is worth to recalling that
all these structures appeared in natural and independent way in quantum
structures, but all are equivalent to MV-algebras.
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Giuntini [Giu] recently introduced an interesting class of algebraic struc-
tures, a quantum many-valued algebra (QMV-algebra), which generalizes
MV-algebras. Axiom (MVviii) is responsible for the lattice-theoretic behavior
of the corresponding operations ∨ and ∧ defined via a ∨ b 5 (a* % b)* %
b and a ∧ b 5 (a % b*) ( b for any a, b P L.

Theorem 2.6. Let (X; %, (, *, 0, 1) be a QMV-algebra and define a
binary operation* on X via

x ∗ y :5 x ( y*, x, y P X

Then (X; ∗, 0) is a BCK-algebra if and only if (X; %, (, *, 0, 1) is an
MV-algebra. If this is the case, then (X; ∗, 0, 1) is a bounded commutative
BCK-algebra.

The converse statement holds, too, starting with a bounded BCK-algebra.

Theorem 2.7. Let an orthoalgebra (X; %, 0, 1) be a lower semilattice.
Define a binary operation ∗ on X via

x ∗ y 5 (x' % (x ∧ y))', x, y P X

Then the following statements are equivalent:

(i) (x ∗ y) ∗ z 5 (x ∗ z) ∗ y, x, y, z P X
(ii) (X; ∗, 0, 1) is a bounded implicative BCK-algebra.4

(iii) (X; %, (, *, 0, 1) is an MV-algebra with x % y 5 x ∨ y for all
x; y P X.

(iv) (X; #, ∨, ∧, *, 0, 1) is a Boolean algebra.

In addition, the converse implication holds, too.

3. COMMUTATIVE BCK-ALGEBRAS WITH THE RELATIVE
CANCELLATION PROPERTY

A commutative BCK-algebra (X; ∗, 0) has the relative cancellation
property if, for a, x, y P X, a # x, y with x ∗ a 5 y ∗ a implies x 5 y.

Every upward-directed or bounded commutative BCK-algebra has the
relative cancellation property.

Example 3.1. ({0, 1, 2, 3}; ∗, 0) is a commutative BCK-algebra which
is not directed upward, consequently it is not a lattice. It does not have the

4 A BCK-algebra (X; ∗, 0) is called implicative if, for all x, y P X we have x 5 x ∗ ( y ∗ x).
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relative cancellation property, because 1 # 2, 3 and 2 ∗ 1 5 1 5 3 ∗ 1, but
2 Þ 3,

∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 0
2 2 1 0 1
3 3 1 1 0

Consequently, X cannot be embedded into the positive cone of an Abelian
l-group.

We define a partial binary operation 1 via a 1 b 5 c iff c $ a and
c ∗ a 5 b. Here, 1 is commutative, associative, and cancellative, and 0 is
a neutral element.

Example 3.2. Suppose that (G; 1, #, 0) is an Abelian l-group with the
positive cone G+ 5 {g P G: g $ 0}. Then (G+; ∗G , 0) is a commutative
BCK-algebra with the relative cancellation property, where ∗G is defined via

u ∗G v :5 (u 2 v) ∨ 0

for u, v P G+. More generally, if G0 is a nonvoid subset of G+ such that u,
v P G0 implies u ∗G v P G0, then (G0; ∗G , 0) is a commutative BCK-
subalgebra of (G+; ∗G , 0) having the relative cancellation property.

Theorem 3.3. Let (X; ∗, 0) be a commutative BCK-algebra with the
relative cancellation property. Then there exists an Abelian l-group (G; 1
#, 0) with the positive cone G+ and a nonvoid subset G0 of G+ generating
G+ such that u, v P G0 implies u ∗G y P G0, and there exists a BCK-
isomorphism h from X onto G0.

In addition, X has a universal group, i.e., a pair (G, h), where G is an
Abelian l-group and h: X → G such that (i) h(X ) generates G+, (ii) h preserves
1, and (iii) for any partially ordered Abelian group G1 and any order and
1-preserving mapping g: X → G1 there is a group-homomorphism of ordered
groups g8: G → G1 such that g 5 g8 + h.

We denote by @#_ the category whose objects are commutative BCK-
algebras and morphisms are BCK-homomorphisms.

Let G1 and G2 be two Abelian l-groups. A mapping h: G1 → G2 is said
to be an l-group homomorphism iff h is both a group-homomorphism and a
lattice-homomorphism; in other words, for each a, b P G, h(a 1 b) 5 h(a)
1 h(b), h(a ∧ b) 5 h(a) ∧ h(b) (as well as for joins).

We denote by +& the category whose objects are pairs (G, G0), where
G is an Abelian l-group and G0 is a nonvoid subset of the positive cone G+

of G such that G0 generates G+ and (G0; ∗G , 0) is a BCK-algebra.
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A morphism from (G, G0) into (G8, G80) is an l-group homomorphism
h: G → G8 such that h(G0) # G80.

Let now (G, G0) be an object of +& and define a morphism - from
the category +& into the category @#_ as follows;

-(G, G0) 5 (G0; ∗G , 0)

Theorem 3.4. - is a faithful and full functor from the category +& of
Abelian l-groups into the category @#_ of commutative BCK-algebras with
the relative cancellation property. In addition, - defines a categorical
equivalence.

For example, let (G, u) be a unital Abelian l-group with a strong unit
u, and define G0(u) 5 {g P G: 0 # g # u}, with operations

a %G b :5 u ∧ (a 1 b)

a (G b :5 0 ∨ (a 1 b 2 u)

a*G :5 u 2 a

We obtain an MV-algebra and Mundici’s [Mun1] famous categorical represen-
tation of MV-algebras via unital l-groups. We recall that our representation
is in frames of so-called interval effect algebras, when an effect algebra, or
equivalently a D-poset appears as a unit interval in some partially ordered
Abelian group. Such a connection of quantum structures in the newest fashion
with po-groups gives us an unexpected application of standard part of mathe-
matics, po-groups, to quantum structure theory, as was underlined by Greechie
and Foulis [GrFo].

4. MEASURES ON COMMUTATIVE BCK-ALGEBRAS

Let (X; ∗, 0) be a BCK-algebra (not necessarily commutative). A mapping
m: X → [0, `) is said to be (i) a measure if m(x ∗ y) 5 m(x) 2 m( y) whenever
y # x; (ii) a measure-morphism if m(x ∗ y) 5 m(x) ∗R m( y), x, y P X. If, in
addition, 1 P X and m(1) 5 1, m is said to be a state or a state-morphism.

I # X is an ideal of a BCK-algebra X if :

(i) 0 P I.
(ii) If x ∗ y P I and y P I, then x P I.

If we define x ,I y iff x ∗ y P I and y ∗ x P I, then ,I defines a congruence,
and X/I is a BCK-algebra, too.

It is interesting to recall that if m is a measure on X, then Im :5 {x P
X: m(x) 5 0} is an ideal of X, and the quotient X/Im is always a commutative
BCK-algebra.
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We denote by }(X ) the set of all maximal ideals. It is worth to recall
that in contrast to MV-algebras (5 Boolean D-posets, or equivalently to
bounded commutative BCK-algebras), it can be empty.

Define recursively, for all x, y P X,

x ∗0 y 5 x, x ∗1 y 5 x ∗ y, . . . , x ∗n11 y 5 (x ∗n y) ∗ y, n $ 1

An elemenlt u P X is a quasi strong unit for X iff given x there exists
an integer n $ 1 such that x ∗n u 5 0. This is equivalent to h(u) being a
strong unit for (G, h).

If X has a quasi strong unit, then }(X ) Þ 0⁄ .
A radical, Rad(X ), of a commutative BCK-algebra (X; ∗, 0) is defined by

Rad(X ) 5 ù{I: I P }(X )}

X is semisimple if Rad(X ) 5 {0}.
We now show how unbounded commutative BCK-algebras can appear

in many MV-algebras studying radicals.
If X is a bounded commutative BCK-algebra (5 an MV-algebra), then

the radical R(X ) exists and (Rad (X ); ∗ 0) is not necessarily a bounded
commutative BCK-algebra in which a 1 b P Rad(X ) for all a, b P Rad(X ).

The radical of a commutative BCK-algebra or of a Boolean D-poset
gives important information concerning the corresponding quantum structure,
as follows from the following two results.

Theorem 4.1. Let u be a quasi strong unit of a nontrivial commutative
BCK-algebra (X; ∗, 0) with the relative cancellation property. Let Su(X ) be
the set of all measures m on X such that m(u) 5 1. Then Su(X ) is a nonempty
compact convex Hausdorff space, and the space of all measure-morphisms
from Su(X ) is a nonvoid compact Hausdorff space. Any measure from Su(X )
is a weak limit of the convex hull of the set of extremal points of Su(X ). In
addition, the following statements are equivalent:

(i) m is an extremal measure from Su(X ).
(ii) m is a measure-morphism from Su(X ).

(iii) m(x ∧ y) 5 min{m(x), m( y)}, x, y P X, m(u) 5 1.

Theorem 4.2. Let u be a quasi strong unit of a nontrivial commutative
BCK-algebra (X; ∗, 0) with the relative cancellation property. The following
statements are equivalent:

(i) X is semisimple.
(ii) X is Archimedean.

(iii) X has an order-determining system of measure-morphisms from
Su(X ).
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(iv) X has an order-determining system of measures from Su(X ).
(v) X is isomorphic to some commutative BCK-algebra of functions

on some V Þ 0⁄ .5

According to the above, if m is a measure on X, then

Im :5 {x P X: m(x) 5 0}

is an ideal of X, and there exists a one-to-one correspondence between the
set of all measure morphisms and maximal ideals, respectively, given by the
correspondence m ° Im.

It is worth recalling that the notion of a state on MV-algebras defined,
e.g., by [Mun2] or on bounded commutative BCK-algebras coincide.

5. CONCLUDING REMARKS

In the paper, we have studied commutative BCK-algebras and their
connection to the newest quantum structures like D-posets, MV-algebra,
quantum MV-algebras (QMV-algebras), as well as orthoalgebras. Quantum
structures are various kinds of algebraic structures motivated by mathematical
foundations of quantum mechanics.

We have given necessary and sufficient conditions for a BCK-algebra
and for a D-poset to be the same as an MV-algebra (Theorems 2.3–2.5).

We have proved that a quantum MV-algebra can be reformulated as a
BCK-algebra iff it is an MV-algebra (Theorems 3.3 and 3.4).

We have stressed that among unbounded BCK-algebras can be found
many BCK-algebras of the form (Rad(X ), ∗, 0), where X is an MV-algebra.

In addition, we have described categorical equivalence of the category
of commutative BCK-algebras with the relative cancellation property with a
special category of l-groups, Theorems 3.3 and 3.4, and described the state
space of commutative BCK-algebras.
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